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A B S T R A C T

Recent interest in enlarged perivascular spaces (ePVS) in the brain, which can be visualized on MRI and appear
isointense to cerebrospinal fluid on all sequence weightings, has resulted in the necessity of reliable algorithms for
automated segmentation to allow for whole brain assessment of ePVS burden. However, several publicly available
datasets do not contain sequences required for recently published algorithms. This prospective study presents a
method for identification of enlarged perivascular spaces (ePVS) in white matter using 3T T1 and FLAIR MR
imaging (MAPS-T1), making the algorithm accessible to groups with valuable sets of limited data. The approach
was applied identically to two datasets: 1) a repeated measurement in a dementia-free aged human population
(N¼ 14), and 2) an aged sample of multisite ADNI datasets (N¼ 30). ePVS segmentation was accomplished by a
stepwise local homogeneity search of white matter-masked T1-weighted data, constrained by FLAIR hyper-
intensity, and further constrained by width, volume, and linearity measurements. Pearson’s r was employed for
statistical testing between visual (gold standard) assessment and repeated measures in cohort one. Visual ePVS
counts were significantly correlated with MAPS-T1 (r ¼ .72, P< .0001). Correlations between repeated mea-
surements in cohort one were significant for both visual and automated methods in the single visually-rated slice
(MAPS-T1: r ¼ .87, P< .0001, visual: (r ¼ .86, P< .0001) and for whole brain assessment (MAPS-T1: r ¼ .77,
P¼ .001). Results from each cohort were manually inspected and found to have positive predictive values of
77.5% and 87.5%, respectively. The approach described in this report is an important tool for detailed assessment
of ePVS burden in white matter on routinely acquired MRI sequences.
1. Introduction

Enlarged perivascular spaces (ePVS), commonly termed Virchow-
Robin spaces, are visible on standard magnetic resonance imaging pro-
tocols at clinical field strength and have been grossly associated with
several neurological disease processes (Achiron and Faibel, 2002; Bane-
rjee et al., 2017; Gutierrez et al., 2017; Kuribara et al., 2017). The
detection of ePVS in MR imaging has classically included the necessity of
visually inspecting both T1 and T2-weighted sequences to ensure that the
space in question is isointense to ventricular cerebrospinal fluid (Ward-
law et al., 2013). Manual ePVS burden assessment can be onerous and
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time-consuming in clinical and in research settings, which may preclude
whole brain assessment, and is typically done on axial images for which
burden can vary based on the position of the slice and the orientation of
vascular structures at that position. A recently published automated
method utilizes spatially coregistered T1, T2, fluid attenuated inversion
recovery (FLAIR) and proton density (PD) for whole brain burden
assessment (Boespflug et al., 2018). Acquisition time of all four se-
quences may be prohibitive in certain clinical or research settings and the
requirement of four separate sequences may preclude the use of the
multimodal algorithm in some legacy longitudinal datasets, which are of
particular interest in the context of neurodegenerative disease and
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normal aging (Gao et al., 2011; van den Heuvel et al., 2006). Finally,
movements between sequences that are more than 1mm and/or imper-
fect post hoc coregistrations may limit the sensitivity of the multimodal
algorithm. ePVS detection is particularly vulnerable to small errors in
coregistration due to the linear shape and small size of ePVS. An algo-
rithm requiring fewer sequences increases sensitivity by requiring less
coregistration and interpolation while shorter acquisition time mini-
mizes opportunities for subject motion to compromise data.

These limitations drive the necessity of an algorithm that uses fewer
volumes or weightings as a basis set. The most commonly acquired
weightings performed at clinical MRI field strengths are T1 and T2. This
report describes a segmentation algorithm that utilizes T1 and T2-
weighted FLAIR volumes (MAPS-T1) and compares results in a repeated
measures cohort to expert visual ratings, as well as a separate multisite
validation of MAPS-T1 in the publicly available Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort. We present a method for iden-
tification of enlarged perivascular spaces using only commonly clinically
acquired T1 and FLAIR MR imaging, making the algorithm accessible to
groups with valuable sets of limited data.

2. Materials and methods

2.1. Participants

2.1.1. Cohort one - repeated measures
Neuroimaging data were acquired as part of an ongoing prospective

research study. Study participants signed informed consent and HIPAA
authorization, approved by the Institutional Review Board, prior to
participation in the study. Neuroimaging sessions were performed during
two distinct sessions on 14 participants (Table 1, characteristics of cohort
one are at visit one). The mean inter-scan interval was 366 days (range:
280–441 days, st. dev.¼ 49). Participants were older dementia-free
adults living independently. Visual ratings were made by three inde-
pendent raters on each dataset using an established visual rating scale
(Wardlaw et al., 2013). One rater is a board certified neuroradiologist
(JMP) with 10.5 years of experience and the other two raters each have at
least 10 years of MRI experience (ELB and DLL). Spatially co-registered
T1-weighted and FLAIR images were made available and each rater
chose an axial slice superior to the lateral ventricles that subjectively
represented the slice with the highest number of ePVS. Each rater iden-
tified the location of each distinct ePVS on the entire slice by drawing a
single pixel region of interest. Segmented ePVS were overlaid on
T1-weighted and FLAIR volumes for each subject and an author (DLS)
screened the results for false alarms.

2.1.2. Cohort two – ADNI
Thirty datasets that was acquired as part of the multisite ADNI2 im-

aging protocol were downloaded as a part of a larger cohort from the
ADNI website subject to the following constraints: 1) near isotropic T1-
weighted and FLAIR MRI, 2) Hachinski Ischemia Score (HIS)> 0 and
clinically reported presence of hypertension, 3) age was normally
distributed in the cohort (range: 58–92 years, Table 1). Seventeen sites
were represented in the final dataset. Segmented ePVS were overlaid on
T1-weighted and FLAIR volumes for each subject and two authors (ELB
Table 1
Dataset characteristics.

Cohort 1 (N¼ 14) Cohort 2 (N¼ 30)

Age, years (range) 85.3 (70–101) 74.3 (58–92)
Gender (% female) 57.8 40.0
MMSE (range) 28.36 (22–30) n/a
CDR %0 (range) 83 (0.0–0.5) 16.7 (0.0–2.0)
ICV (cm3) 1871.6� 202.8 1855.4� 219.1
WMH (cm3) 12.3� 10.2 10.5� 10.1
Hachinski %>0 (range) 64 (0–8) 90 (1–3)
History of stroke (%) 29 7
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and DLS) screened the results for false alarms.

2.2. Image acquisition and preprocessing

Cohort one MRI data were obtained using a 3.0T Siemens Trio MRI
(TIM Trio System, Siemens Healthineers, Erlangen, Germany). Two se-
quences were acquired: 3D T1-weighted magnetization prepared rapid
gradient echo ([MPRAGE/T1]: TR/TE/TI/FA¼ 2300ms/3.41ms/
1200ms/12�, 128 sagittal 1 mm slices with no gap,
FOV¼ 256� 192mm, imaging matrix¼ 256� 192); 2D fluid attenuated
inversion recovery ([FLAIR]: TR/TE/TI/FA¼ 9000ms/87ms/2500ms/
100�, 95 axial 2 mm slices with no gap, FOV¼ 228� 248 mm, imaging
matrix¼ 236� 256, 2 averages). Cohort 2 MRI data were acquired as
described at http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/.

DICOM files were converted to NIFTI using mcverter (MRIConvert,
http://lcni.uoregon.edu/downloads/mriconvert/mriconvert-and-mc
verter). T1-weighted images were segmented into tissue types using
Freesurfer v5.1, which yielded masks of white matter (WM), cortical gray
matter (GM), subcortical gray matter (BG), and ventricular CSF. WM
masks were corrected for tissue misclassification due to white matter
hyperintensities (WMH), meaning that WMH were included in the WM
mask, by the method described in (Promjunyakul et al., 2015). Briefly,
clusters of contiguous voxels of intensity 35% higher than the peak of the
distribution of intensities in FLAIR WM were used as seed clusters for a
custom cluster growing algorithm. Themean intensity of each cluster was
calculated and then all nearest neighbor voxels of intensity exceeding
95% of the mean cluster intensity were iteratively added to the cluster
until no additional voxels met threshold. White matter masks were
eroded by a single voxel to avoid the potential of partial volume effects.
Separately, FLAIR and T1 volumes were bias field corrected using slicer3
(https://www.slicer.org/) in preparation for ePVS segmentation. The
MAPS-T1 algorithmwas accomplished in two phases, intensity-based and
morphology-based, as follows. Note that the cohort one data used in this
report is confidential and cannot be shared publicly; however, the code
that executes the segmentation of ePVS can be made available upon
direct request to the corresponding author (DLS).

2.2.1. Local voxel intensity inhomogeneity
Analysis of the intensity-based phase was accomplished in AFNI (Cox,

1996) using the following methods. For voxels within the white matter
(WM) mask, the local homogeneity of each voxel is assessed to identify
clusters of interest. Specifically, in the T1-weighted images, a search field
was defined as all voxels within 3.5 mm from the ith voxel and within the
WM mask. The median intensity value of voxels in the search field
neighborhood is computed and recorded as the ith voxel’s median score.
Separately, the mean difference between the ith voxel and its neighbors
in a field of radius 5.5 mmwas calculated (its “difference score”). In order
for a voxel to meet criteria for a likely ePVS on isotropic T1-weighted
images, it must a) have an intensity that is less than 90% of the median
score, b) be in the WM mask, and c) have a difference score that is larger
than 5% of its intensity value. Each of these thresholds are generally
governed by the SNR of the data and CNR of ePVS relative to normal
appearing white matter (NAWM), respectively, and may be changed if
data are noisy or if the weighting is tuned such that ePVS are less visible
in contrast to NAWM. Separately, voxels that met criteria for being
non-white matter hyperintensity on FLAIR were those for which the
FLAIR intensity was lower than the sum of the mean and standard de-
viation of all voxels in the WMmask. The voxels that met both the FLAIR
and the T1 criteria were constructed into voxel clusters larger than 5
(corners touching) and those clusters were submitted to the morpho-
logical constraint. See Fig. 1 for a brief schematic of the algorithm.

2.2.2. Cluster morphology
The morphological constraint was performed in MATLAB (Natick,

MA). The minimum cluster size was set at 5 voxels with corners touching
in order to ameliorate the likelihood of a configuration of voxels being
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Fig. 1. A periventricular FLAIR-screened object that resembles an ePVS but is a
WMH edge (left, “FAIL”) and successful segmentation of an ePVS in the superior
frontal gyrus (right, “PASS”). The isolated cluster is submitted to the morpho-
logical constraint (far right).
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collinear with respect to a best fit line through a longitudinal axis.
Linearity was defined as the percent explained variance of the fit longi-
tudinal vector; the inclusion constraint was set at >80%. The width was
defined as the maximal distance between vertices that describe the
intersection of a plane that is normal to the fit longitudinal vector (used
in the linearity calculation) for each cluster and upon which the center of
a voxel lies. This plane was constructed for each voxel in each cluster
(green, Fig. 1), and maximal vertex distances calculated, the largest of
which defined the width of the cluster; clusters with a larger width than
15 voxels (16.41mm, corner to corner) were excluded. The length of the
cluster was calculated as the furthest distance between intersected
vertices on the fit longitudinal vector; there were no inclusion or exclu-
sion criteria for length.
2.3. Statistical analysis

We evaluated the performance of this segmentation algorithm rela-
tive to visual counts in each dataset by three raters in cohort one. Re-
ported correlations of manual counts are the average counts over three
raters; in the case of the automated algorithm, average counts were
assessed in the slices which were visually rated. In an effort to report the
unedited result of the automated algorithm, these visual validation
metrics were calculated on the output of MAPS-T1 before manual
removal of false alarms. Within-subject false alarm rate was calculated by
dividing the number of false alarms in a subject’s dataset by the total
number of objects segmented by the algorithm. Signal-to-noise ratio
(SNR) and ePVS contrast-to-noise (CNR) for both T1-weighted and FLAIR
volumes were also calculated.

Statistical analysis of cohort two results included the calculation of
within-subject false alarm rates, SNR and ePVS CNR for both T1-weighted
and FLAIR volumes, and count and volume summary variables for each
subject. ePVS SNR and CNR were calculated on true positives only.

Positive predictive value was calculated for both cohorts over all
3

segmented ePVS. SNR for T1 and FLAIR was calculated as the mean in-
tensity of identified ePVS or NAWM divided by the standard deviation of
NAWM. CNR measurements were calculated as the absolute value of the
difference between the mean of identified ePVS and NAWM (i.e. a vol-
ume from which segmented ePVS and hyperintense FLAIR voxels were
subtracted) and divided by the standard deviation of NAWM.

3. Results

3.1. Cohort one

Visual ePVS counts were significantly correlated with MAPS-T1
(r(26)¼.72, p< 0.0001). Correlations between repeated measurements
were significant for both methods in the single visually-rated slice
(MAPS-T1: r(12)¼.87, p< .0001, visual: r(12)¼.86, p< .0001) and for
whole brain assessment (MAPS-T1: r(12)¼.77, p¼ .001). T1 ePVS and
NAWM SNR mean (st. dev. over datasets) were 13.9 (2.2) and 17.0 (2.7),
respectively. FLAIR ePVS and NAWM SNR mean (st. dev. over datasets)
were 12.5 (1.9) and 12.3 (2.0), respectively. T1 and FLAIR ePVS CNR
mean (st. dev.) were 3.1 (0.6) and 0.3 (0.2), respectively. The mean
subject-wise false alarm frequency (st. dev., [range]) was 25% (16%,
[6–56%]), which corresponded to an overall positive predictive value in
cohort one of 77.5%. An example segmentation, with highlighted correct
rejections and an example of a “miss”, can be found in Fig. 3.
3.2. Cohort two

T1 ePVS and NAWM SNR mean (st. dev. over datasets) were 9.5 (2.2)
and 11.8 (2.5), respectively. FLAIR ePVS and NAWM SNR mean (st. dev.
over datasets) were 11.0 (2.3) and 10.8 (2.4), respectively. T1 and FLAIR
ePVS CNR mean (st. dev.) were 2.3 (0.5) and 0.2 (0.2), respectively. The
mean subject-wise false alarm frequency (st. dev., [range]) was 15%
(13%, [0–61%]; note that the cohort two subject with the highest error
rate had a relatively low overall burden, the stacked bar sixth from the
right in the bottom right graph in Fig. 2), which corresponded to an
overall positive predictive value in cohort two of 87.5%.

4. Discussion

This report introduces a method of segmenting ePVS based on the
relative intensity of a voxel’s neighbors and the morphological prop-
erties of isolated clusters on T1-weighted imaging using hyperintensity
on FLAIR as a rule-out. Comparison of the burden metric (ePVS counts)
in a single slice to gold standard visual assessment yields significant and
reliable estimates over repeated acquisitions <2 years apart. The choice
of the modifiable thresholds for search fields, voxel median score (in
these data, 10% smaller than the median) and mean difference score
(5%) are driven by NAWM homogeneity, SNR, and ePVS CNR,
respectively, and different thresholds may easily be chosen and
implemented on a dataset-wide basis, though the settings used in this
analysis appeared to be applicable to subjects with a wide range of WM
pathology and spatially variable SNR and CNR, as well as in a sepa-
rately acquired and analyzed multisite cohort from ADNI. These
thresholds were chosen after qualitatively acceptable segmentations on
the “SUBJECT VISIT 1” subset (Fig. 2, top middle left graph, left side).
The maximum volume of the search field is informed by NAWM ho-
mogeneity in a dataset; if tissue homogeneity is very low (as in data for
which B1 inhomogeneity is high), the search field may be reduced,
though minimum search field volumes are constrained by the physio-
logical size of ePVS. The FLAIR is used for the screening of WMH that
are falsely identified on T1 as putative ePVS due to their similar
hypointensity relative to NAWM (Wardlaw et al., 2013); manually
edited WMH masks can be applied in place of the voxelwise FLAIR
constraint, though these masks may remove ePVS that are proximal to
or contained by a WMH.



Fig. 2. Results (Top row: cohort one; bottom row: cohort two). Top left: SNR and CNR measurements for T1 and FLAIR. Top middle left: Average of single slice counts
by visual raters (gray) and single slice MAPS-T1 counts for each of the 14 subjects. Top middle right: Single slice averages over subjects (bars are st. dev.). Top right:
Whole brain within subject correlation for MAPS-T1. Bottom left: SNR and CNR measurements. Bottom middle and right: True positive and false alarm rates for MAPS-
T1 in cohort one and in cohort two.

Fig. 3. A representative segmentation. Top row: T1-weighted image; bottom row: results of segmentation in red. Green circle¼ a deep WMH that has been avoided by
the algorithm; green arrow¼motion artifact avoided by the algorithm; blue arrow¼ a “missed” ePVS; yellow arrow¼ an example of the advantage of a three
dimensional algorithm (3 ePVS oriented AP are identified proximal to an ePVS oriented obliquely in the coronal plane).
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4.1. Related work

There have been several recently published articles describing
various methods for automated or semi-automated ePVS segmentation
on MRI. Reliable segmentation of these structures with clinically relevant
sensitivity and specificity can be difficult owing to their small size rela-
tive to standard clinical imaging voxel sizes, low CNR compared to sur-
rounding NAWM, morphological discontinuity due to both physiological
variability and to partial volume effects, and shared intensity profiles
over some or all commonly acquired MRI weightings with other MRI-
visible pathology such as lacunar infarcts and WMH. Some methods
4

have overcome many of these obstacles by utilizing high field (7 T) ac-
quisitions (Park et al., 2016; Zhang et al., 2017), machine learning
(Dubost et al., 2019; Zhang et al., 2017), binary classifiers (Gonza-
lez-Castro et al., 2017), Frangi (Ballerini et al., 2018) or object-based
filtering (Descombes et al., 2004), or software designed for lesion
exploration that has been modified to detect ePVS (Ramirez et al., 2015).
All of these methods appear to have some measure of success when
comparing them to categorical visual ratings. The method described
herein is relatively accessible compared to approaches which may be less
relevant in the clinical context (e.g. high field acquisition or acquisition
with specialized hardware �a la the Human Connectome Project), due to



Fig. 4. An example of an unsuccessful elimination of a lacune by the
morphology step (top, timepoint 1) and a successful elimination (bottom,
timepoint 2) in the same subject in cohort one. Metrics shown are [volume,
linearity, maximum width x length]. “pre” and “post” signify pre- and post-
morphology constraint.
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other methods being computationally expensive, requiring a consider-
able amount of human interaction, being study-specific (i.e. classifiers
and optimization schemes in machine learning paradigms are often
driven by within-study data), or perhaps most importantly requiring
multiple acquisitions (i.e. T2-weighted spin echo and/or proton density)
that may not be acquired as a matter of course. Notably, this method has
not yet been applied to ePVS that are located in the basal ganglia or in the
midbrain, two regions which can exhibit high burden in aged brains
(Saeki et al., 2005); the method specifically relies on local intensity
contrast which is different in subcortical gray matter and in the brain-
stem, and can vary widely across subjects and acquisition parameters due
to heavy metal concentration in the basal ganglia and substantia nigra,
especially in the aging population (Brar et al., 2009; Zhu et al., 2009).

4.2. Error assessment and methods comparison

The present method overcomes potential errors resulting from
requisite voxelwise assessment in >2 separately acquired MRI contrasts.
Coregistration between sequences that have been acquired with different
weightings can be inaccurate; the width of ePVS can be as small as 1mm,
and slight errors in coregistration can result in reduced sensitivity when
implementing algorithms using this approach. A more logistical concern
is that multiple sequences may not be available in legacy data, and may
be precluded by scan time constraints in prospective experiments. High
resolution (1–2mm isotropic voxels) T1 and FLAIR weighted data can
each be acquired in less than 5min, reducing the effects of motion, which
can be substantial in aged subjects in whom this algorithm is often
applied. Using two commonly acquired sequences alleviates some con-
cerns related to registration and the necessity of multiple weightings in a
single subject, making this segmentation algorithm more widely
applicable.

Any algorithm used to assess WM ePVS will suffer from incomplete or
imperfect white matter segmentations. Many intensity-based tissue-type
segmentation algorithms, including Freesurfer, have difficulty classifying
non-NAWM (Caligiuri et al., 2015), and older subjects who may be more
likely to have a larger number of ePVS (Zhu et al., 2010) are more likely
to have a higher burden of non-NAWM than younger subjects (Meyer
et al., 1992). We use in house software (Promjunyakul et al., 2015) to
correct defects due to white matter hyperintensities (on FLAIR or T2, and
hypointense on T1) in white matter segmentations. However, partial
volume effects inherent in MRI can smooth white matter hyper-
intensity/NAWM and NAWM/gray matter interfaces, especially in cases
of marked neocortical atrophy which can make the cortical ribbon
difficult to delineate from NAWM. Often, false positive errors are made at
these interfaces; thin clusters that track the interface are identified as
possible ePVS and will pass the morphological constraint. A specific false
positive has been observed by our group in datasets for which the pos-
terior horn of the lateral ventricle is not contiguous with the rest of the
lateral ventricle; in the absence of partial volume effects, ePVS are by
definition isointense to cerebrospinal fluid and these objects are shaped
as an elongated teardrop. Often this structure is incorrectly classified as
white matter by automated tissue segmentation algorithms and so is
identified as a relatively large ePVS.

ePVS can occur in clusters following the course of penetrating vessels
and appear as such in elderly without other signs of disease (Zhu et al.,
2011). As with other ePVS segmentation algorithms, if ePVS are closely
grouped in such a way that partial volume effects cause them to appear as
a large cluster of heterogeneous intensity, the object will be removed as
insufficiently linear. However, if there is sufficient resolution,
contrast-to-noise, and NAWM between individual ePVS, they may be
properly segmented with this algorithm even though they may be quite
close to one another (<2mm, see Fig. 3, yellow arrow).

Finally, lacunes are difficult to differentiate from ePVS on T1, and
though they may often have a hyperintense rim on FLAIR, some lacunes
do not. The morphological component of this automated approach serves
to reduce the frequency of these types of false positives. Fig. 4 illustrates
5

an example of the difficulty of parsing lacunes from ePVS in a single
subject imaged twice; at the first scan (top), the identified object met the
linearity criteria (r> 0.8), while in the second scan it did not (r< 0.8).
Although Wardlaw et al. (2013) identify lacunes by their “round or
ovoid” morphology, a recent report that specifically addresses the
morphology of lacunes finds that lacunes can be relatively linear and that
they follow the geometry of perforating arteries (Gesierich et al., 2016).
The Wardlaw report also seeks to differentiate ePVS from lacunes on the
basis of their width, with PVS defined as having a diameter generally
smaller than 3mm, and lacunes having a diameter from 3mm to 15mm.
This criterion applied in this example would have screened out the lacune
(widths¼ 7.1 and 6.6mm on the two measurements, Fig. 4). Though a
relatively small share of overall identified ePVS in this population had a
width>3mm, ePVS that have a width larger than 3mm have an outsized
relative contribution to overall burden as measured by volume, and so a
width threshold of <3mm for ePVS may lead to consequential misses.
Conversely, the omission of a conservative width threshold may lead to
the inclusion of outsized objects such as lacunes, as in the top row of
Fig. 4. As with any automated segmentation algorithm, visual inspection
of the results of this algorithm is necessary to ensure accurate segmen-
tation of true ePVS, especially in the case of lesions that can mimic ePVS
intensity and morphology. While manual inspection and removal of false
alarm clusters can be time-consuming, we found that high positive pre-
dictive values for the algorithm (77.5% in cohort one and 87.5% in
cohort two) made this process manageable, as the low incidence of false
alarms decreased the amount of time necessary to perform quality
control.

4.3. Clinical potential of MAPS-T1

In addition to linearity measurements, the morphological step of this
algorithm provides information regarding the length and width of these
structures in three dimensions at the resolution of acquisition. These
particular metrics may provide additional insight into the clinical rele-
vance of ePVS, and this tool makes these measurements readily available
for large scale clinical studies that represent the power to overcome small
effect sizes. For example, though this study was not powered or designed
for such a comparison, it is perhaps notable that cohort two, a subject
pool that was younger, more male, and had higher clinical dementia
ratings than cohort one, as well as lower overall SNR, had 64% more
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ePVS/subject than in cohort one (50.6 vs. 82.8 ePVS/subject, bottom of
Fig. 2) after manual omission of false alarms. The accurate character-
ization of previously considered subpathological enlarged Virchow-
Robin spaces has the potential to introduce a research path into a
multitude of disease processes, and this method will make these in-
vestigations immediately available to prospective investigations that
have limited imaging time available and to retrospective and/or longi-
tudinal studies with limited datasets.
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